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Abstract Whereas the Vlasov (a.k.a. “mean-field”) limit for N -particle systems with suffi-
ciently smooth potentials has been the subject of many studies, the literature on the dynamics
of the fluctuations around the limit is sparse and somewhat incomplete. The present work
fulfills two goals: 1) to provide a complete, simple proof of a general theorem describing
the evolution of a given initial fluctuation field for the particle density in phase space, and
2) to characterize the most general class of initial symmetric probability measures that lead
(in the infinite-particle limit) to the same Gaussian random field that arises when the ini-
tial phase space coordinates of the particles are assumed to be i.i.d. random variables (so
that the standard central limit theorem applies). The strategy of the proof of the fluctua-
tion evolution result is to show first that the deviations from mean-field converge for each
individual system, in a purely deterministic context. Then, one obtains the corresponding
probabilistic result by a modification of the continuous mapping theorem. The characteri-
zation of the initial probability measures is in terms of a higher-order chaoticity condition
(a.k.a. “Boltzmann property”).

Keywords Vlasov equation · Mean-field limit · Central limit theorems · Fluctuation
dynamics · Sznitman-Tanaka theorem

1 Introduction

Among the various models of classical kinetic theory, one of the earliest to be justified in
terms of a rigorous derivation from microscopic N -body dynamics was the Vlasov equation
for a classical plasma with sufficiently regular1 interparticle potential, see [2, 3, 14, 17, 18].

1Typically, “sufficiently regular” means bounded and uniformly Lipshitz continuous. For recent efforts to
extend the theory to other situations, see [5, 13] and references therein.
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Since the Vlasov limit can be easily given a probabilistic interpretation as a law of large
numbers [2], a natural question to ask is whether one can establish a central limit theorem
(CLT) for the fluctuations. The first result of this kind was established in 1977 by Braun and
Hepp [2]. Their CLT, however, does not concern the fluctuations of the phase-space density
of particles, which is the principal physical observable for the model under consideration.
Rather, they studied the fluctuations of the trajectory of a test particle,2 by comparing the
phase flow determined by the force field of N interacting particles with the Vlasov flow
obtained in the limit N → ∞. Of course, in the special case when the test particle coincides
with one of the N interacting particles, this amounts to describing the fluctuations of each
N -particle orbit from its mean field approximation. While it may well be possible to use the
Braun-Hepp CLT for the characteristics in order to prove a CLT for the phase space density,
no such proof is found in Ref. [2]. An argument of this kind is implied in the book by Spohn
[20, §7.5], which describes a full-fledged CLT for the Vlasov density fluctuations but gives
no proof other than referring back to the work of Braun and Hepp [2].

Despite its somewhat unfinished state, this part of the theory has not attracted much
interest ever since. A development came a few years later when Sznitman [21] proved a CLT
for Vlasov-McKean stochastic processes that includes a Vlasov CLT as a special case. We
recall that in a Vlasov-McKean process for N particles [15, 16, 21, 22] the dynamics of each
particle is driven not only by a mean-field potential but also by one or more Brownian motion
terms, whose diffusion coefficients also depend on the positions of the other particles in a
mean-field fashion. The N -particle Newtonian equations associated with the Vlasov limit
are a very simple example of Vlasov-McKean process, in which the diffusion coefficients
are exactly zero and the stochasticity may come in exclusively from the initial condition,
whereas the time evolution is purely deterministic. Sznitman’s proof does go through in this
special case; however, being designed to control a truly stochastic dynamics, it involves a
large amount of probabilistic machinery and estimates that turn out to be unnecessary in the
absence of Brownian terms. Moreover, Sznitman considered only the special case of initial
probability measures that are products of N single-particle measures.

Rebus sic stantibus a revisitation seems to be in order. The first goal of the present study
will be to work out in detail a simple, economical proof of a general CLT for fluctuations
about the Vlasov limit. Such proof will not rely on the Braun-Hepp CLT for test particle
trajectories and will apply to a broader class of initial conditions, with factorized initial
measures as a special case. The guiding principle will be that, as long as the N -particle
evolution equations are deterministic, the simplest and most easily extendable results are
obtained by keeping the dynamical and probabilistic aspects as separate as possible. Specif-
ically, it will be shown that if the deviations of the particle density from the limiting value
converge at time t = 0 as N → ∞ (in an appropriate weak topology), then they will con-
verge at subsequent times for any individual system—very much like the particle density
of an individual system converges to its infinite-particle limit at time t if it does so initially.
Then, if instead of “deviations” (deterministic objects) one considers “fluctuations” (random
variables), all is left to do is to study the propagation in time of whatever CLT is known to
hold at t = 0. Here, this is done by a simple adaptation of the continuous mapping theorem
of probability theory [12]. The observation that Vlasov fluctuations can be expected to be
simply transported by the (linearized) Vlasov dynamics was already made by Spohn [20].
However, to the best of my knowledge it was never properly implemented in the literature,
perhaps because of a widespread opinion that all major questions about Vlasov fluctuations
had been answered by the work of Braun and Hepp [2].

2This fact was pointed out to me by Michael Kiessling.
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The fact that the infinite-particle limit for an individual system is treated separately from
the probabilistic analysis for an ensemble means that the two can also be upgraded sepa-
rately. On one hand, if one can control the Vlasov limit (including the deviations) for more
general interparticle potentials, then the probabilistic treatment described here will apply
without changes. On the other hand, if one proves some different, possibly more sophisti-
cated CLT at t = 0, the fluctuation field will still propagate in time according to the same
dynamical laws described below. An interesting generalization of the CLT along these lines
occurs if one studies probability measures that are not factorized but satisfy only a higher-
order version (“strong μ-chaoticity”) of the familiar “Boltzmann property” [11]. The second
goal of the present work is to prove that strong μ-chaoticity characterizes completely the
sequences of symmetric probability measures that lead as N → ∞ to the same Gaussian
random field as in the standard CLT for i.i.d. random variables. Then, if the initial condition
is strongly μ-chaotic, our general propagation result yields at t > 0 the same CLT that holds
for factorized initial measures [21]. It turns out, however, that strong μ-chaoticity does not
propagate in time.

The rest of the article is structured as follows. The model under consideration and much
of the mathematical notation is introduced in Sect. 2, in the context of a concise review of the
Vlasov limit. For the sake of generality, and for notational convenience, we consider not the
Vlasov case per se but a general system of N ordinary differential equations with mean-field
coupling [3]; the Vlasov formulas will appear as examples. The original part of the work
starts in Sect. 3.1, with the study of the N → ∞ limit for the deviations from mean field
for individual systems. The probabilistic analysis (fluctuations) is the subject of Sect. 3.2,
leading to a general CLT which includes Sznitman’s result [21] (without Brownian motions)
as a special case. Section 4 presents the characterization of strongly μ-chaotic sequences and
extends the CLT for fluctuations around the Vlasov limit to this class of initial probability
measures.

2 Review of the Vlasov Limit

In this section we review very succinctly some basic results about the Vlasov limit. For the
sake of simplicity we assume the force between pairs of particles to be smooth (bounded
and globally Lipschitz continuous). For a broader review of the field see [13]. All these
results are by now classic and divide naturally in two parts. In the first subsection the Vlasov
limit is carried out for individual N -particle systems, in a purely deterministic setting. No
probabilistic concepts are introduced and all that needs to be assumed is a sequence of
initial N -particle configurations that approximate a given density in phase space as N → ∞.
Statistical ensembles of systems are considered in the second subsection, where the Vlasov
limit takes the form of a law of large numbers for the ensemble.

2.1 Convergence of Densities

Consider a system of N objects (“particles”), described by coordinate vectors zi ∈ R
d , i =

1, . . . ,N , whose time evolution is determined by the d × N ODEs

żi = G(zi ) + 1

N

N∑

j=1

F(zi − zj ), (1)
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with given initial conditions zi (0) ≡ zi,0. Throughout this paper F and G are taken to be
in Lip(Rd), the space of globally Lipschitz continuous functions from R

d to R
d , thus en-

suring that the Cauchy problem for (1) is well-posed on any time-interval [0, T ]. The most
important example, of course, is that of a mechanical system of N particles with d = 6,
zi ≡ [qi ,pi] ∈ R

3 × R
3, G(z) ≡ [p,K(q)] and F(z) ≡ [0,−∇φ(q)], where K is a given ex-

ternal force and φ is a central potential3 describing the interaction between pairs of particles.
In the context of the Vlasov limit, it is convenient to consider not the state vector

(z1, . . . , zN) but rather the corresponding “empirical measure” on R
d

μN
t = 1

N

N∑

j=1

δzj (t). (2)

For each fixed t , μN
t belongs to the set M+

1 of all probability measures on the Borel σ -
algebra B(Rd), endowed with the topology of weak convergence, to be denoted by the sym-
bol

w→. As is well known, weak convergence on M+
1 can be metrized with the bounded

Lipschitz (BL) metric (see [4, p. 394]). For μ, ν ∈ M+
1 the BL distance is given by

d(μ, ν)
def= sup

‖f ‖BL≤1

∣∣∣∣
∫

f d(μ − ν)

∣∣∣∣, (3)

where

‖f ‖BL
def= sup

z∈Rd

|f (z)| + sup
y,z∈R

d

y	=z

|f (y) − f (z)|
|y − z| . (4)

In what follows Cb(R
d) (respectively, Ck

b (R
d)) will denote the Banach space of contin-

uous and bounded (respectively, k-times continuously differentiable with bounded deriva-
tives) functions from R

d to R with the usual norm. In order to study the Vlasov limit for a
sequence of trajectories {μn

t }, with n = 1,2, . . . , and t ∈ [0, T ], it is natural to consider the
space Cw([0, T ], M+

1 ) of all the time-dependent probability measures that are weakly con-
tinuous, meaning that for all test functions g ∈ Cb(R

d) the quantity 〈μt, g〉 ≡ ∫
Rd g(z)μt (dz)

is a continuous function of t . Then, one wants to prove that if initially μN
0

w→ μ0, then at sub-
sequent times μN

t is also weakly convergent to a limiting evolution μt ∈ Cw([0, T ], M+
1 ).

In order to characterize the limit one observes [18] that μN
t is a solution to the fixed-point

equation in Cw([0, T ], M+
1 )

σt = σ0 ◦ T 0
t [σ ] (5)

where σ denotes the curve t ⇒ σt , weakly continuous in t , and T t
s [σ ] is the flow in R

d from
time s to time t determined by

ż = G(z) +
∫

Rd

F(z − z′)σt (dz′). (6)

That μN
t solves (5) follows easily from the fact that the evolution equations (1) are just

a special case (with σt = μN
t ) of (6). The idea is to show that the limiting evolution for

the density is also a solution to (5) but with initial condition μ0. This is a corollary to the
following

3Together with the continuity of F, this ensures that F(0) = 0.
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Theorem 1 Let F ∈ Cb(R
d)

⋂
Lip(Rd), G ∈ Lip(Rd). Then,

1. For every μ0 ∈ M+
1 (5) has a unique solution μt in Cw([0, T ], M+

1 ).
2. If μ0, ν0 ∈ M+

1 and if μt, νt ∈ Cw([0, T ], M+
1 ) are the corresponding solutions to (5),

then

d(μt , νt ) ≤ eCtd(μ0, ν0), (7)

where C is a constant that depends only on the choice of F and G.

Proof The proof is found in [17, 18] (with trivial modifications to include the term G). See
also [2, 3, 14] and the reviews in [20, Chap. 5] and [8]. �

From (7) follows immediately the desired result:

Corollary 1 Consider a sequence of initial measures μ
(N)

0
w→ μ0 in M+

1 , and let μ
(N)
t and

μt be the corresponding solutions to (5) in Cw([0, T ], M+
1 ). Then μ

(N)
t

w→ μt as N → ∞
for all t ∈ [0, T ].

For future reference, observe that once the existence and uniqueness of the limiting mea-
sure μt has been established, also the corresponding initial value problem for the character-
istics, (6) with σt = μt , is well-posed. Moreover, the characteristics themselves converge.
Precisely, let z(t; z0, σ0) indicate the characteristic curve (a test particle’s trajectory, if you
like) starting at z0 ∈ R

d for a chosen initial density σ0 ∈ M+
1 ; then

lim
N→∞

sup
z0∈Rd

‖z(t; z0,μ
N
0 ) − z(t; z0,μ0)‖Rd = 0 (8)

because of F,G ∈ Lip(Rd) and Gronwall’s inequality (see Appendix A.1).
Even though the “continuity” property expressed by Corollary 1 holds for any limiting

measure μ0 ∈ M+
1 , in applications the most interesting situation occurs when μ0 is contin-

uous with respect to Lebesgue, μ0(dz) = f0(z)dz for some f0 ∈ L1+(Rd). This corresponds
to the physical notion of a continuous density of particles in phase space (what physicists
call a “distribution function,” i.e. a “mesoscopic” description of a fluid). Then, μt is also
absolutely continuous [18] and the Vlasov limit takes the intuitive meaning that as N → ∞
the “discrete” density μN

t approaches the “continuous” density ft (z) ∈ L1+(Rd). Moreover,
ft (z) is easily shown [2, 17, 18] to be a solution (either classical or weak, depending on the
smoothness of f0(z)) to the partial differential equation

∂ft

∂t
+ ∂

∂z
·
[(

G(z) +
∫

Rd

F(z − z′)ft (z′)dz′
)

ft (z)
]

= 0. (9)

For a system of N mechanical particles with pair potential φ (and K ≡ 0) this is, of course,
the Vlasov equation

∂ft

∂t
+ p · ∇qft −

[∫

Rd

∇φ(q − q′)ft (q′,p′)dq′dp′
]

· ∇pft = 0. (10)
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2.2 Propagation of Chaos and the Law of Large Numbers

It must be emphasized that the results cited so far are purely deterministic, and that the use
of probability measures was just a matter of normalization of the initial densities without
any probabilistic meaning. In particular, no statistical assumptions were made on the ini-
tial conditions, which were only required to approximate the desired infinite-particle limit.
A truly probabilistic theory is obtained by assigning a statistical superposition of N -particle
initial conditions and studying the time evolution of an ensemble probability density on the
phase space R

dN . The empirical densities μN
t in (2) are then regarded as M+

1 -valued random
variables on R

d endowed with the Borel σ -algebra and a permutation invariant probability
measure P N

t (dz1, . . . ,dzN). If the initial measure P N
0 is given, the probability measure at

time t will be

P N
t = P N

0 ◦ T0
t , (11)

where Tt
s denotes the flow on R

dN from time s to time t associated with the evolution
equations for (z1, . . . , zN), (1). Thus, the dynamics remains deterministic and the evolution
of the probability density on R

dN is simply induced by the flow Tt
s acting on each “pure

state.” In order to study the N → ∞ limit, of course, one needs to consider the complete
sequence of symmetric probabilities {P n

t }, n = 1,2, . . . , which determines a (symmetric)
probability measure Pt on � ≡ ∏

n>0 R
dN (e.g. see [4, p. 255]).

The analysis of the convergence of the sequences μN
t is very simple in the light of Corol-

lary 1, which is time-reversible and thus ensures a one-to-one correspondence between el-
ements of the ensemble that converge at time zero and at time t . Thus, if one assumes that
{μn

0} converges in probability, or almost surely, or even at every point in the probability space
(�, B0,P0), the same will be true for {μn

t }. What needs to be clarified is the relationship be-
tween the statistics for convergence of the empirical measures and the probability measures
P N

t (dz1, . . .dzN). The idea behind the following definition goes back to Boltzmann but was
given a precise mathematical expression by Kac [11], who called it the “Boltzmann prop-
erty":

Definition 1 Given μ ∈ M+
1 , a sequence {P n} of symmetric probabilities is said to be μ-

chaotic if, for all k = 1,2, . . . and g1, . . . , gk ∈ Cb(R
d),

lim
N→∞

∫

Rdk

k∏

i=i

gi(zi )P
k,N (dz1 . . .dzk) =

k∏

i=i

∫

Rd

gi(z)μ(dz), (12)

where P k,N denotes the k-th marginal of P N .

Then, the crucial connection is given by the following

Theorem 2 (Sznitman-Tanaka) A sequence {P n} is μ-chaotic if and only if the associated
sequence of empirical measures converges to μ, in probability.

Proof See [22], where it is shown that this holds even if the convergence is in law rather
than in probability. See also [8, 9]. �

In other words, μ-chaoticity is equivalent to the validity in probability (and also in law)
of the law of large numbers for the empirical measures. Since the latter propagates in time,
so does the former, and if either property holds at t = 0, then both of them will hold at later
times. In summary, we have:
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Theorem 3 Let μt be the solution to the weak Vlasov equation (35), with initial condition
μ0. Let the sequence {P n

0 } be μ0-chaotic (or, equivalently, let the sequence of empirical
measures at t = 0 converge weakly to μ0 in probability). Then the following statements
hold:

1. (Law of large numbers) For all g ∈ Cb(R
d) and t > 0, in probability

lim
N→∞

1

N

N∑

i=i

g(zi (t)) =
∫

Rd

g(z)μt (dz). (13)

2. (Propagation of chaos) For all k = 1,2, . . . and g1, . . . , gk ∈ Cb(R
d)

lim
N→∞

∫

Rdk

k∏

i=i

gi(zi )P
k,N
t (dz1 . . .dzk) =

k∏

i=i

∫

Rd

gi(z)μt (dz). (14)

Among μ0-chaotic sequences, an important role is played by the product measures

P̃ N
0 (dz1 . . .dzN) =

N⊗

i=1

μ0(dzi ). (15)

In this case the zi are initially i.i.d., and a classical probability result ([4], Theorem 11.4.1)
ensures that the empirical distributions converge almost surely (not just in probability) in
(�, B0, P̃0). However, the opposite implication is not true. As a consequence, the law of
large numbers for t > 0, (13), also holds almost surely, but in general the factorization in
(15) does not propagate in time and the sequence {P̃ n

t } will be only μt -chaotic for t > 0.

3 Deviation/Fluctuation Theory

Having established the limit μN
t → μt , one can seek information “at next order” by studying

the convergence of quantities of the general form

ζN
t = μN

t − μt

αN

, (16)

where {αn} is a suitable numerical sequence such that convergence holds at t = 0. Like for
the Vlasov limit itself, it turns out that the problem can be first studied for sequences of
individual N -particle system. This will be done in the first subsection, where the ζN

t in (16)
will be regarded as deterministic objects and called “deviations.” The term “fluctuations”
will be reserved for the probabilistic theory, to be developed in the second subsection, in
which the ζN

t will be random variables. Even if the limit will be studied in the general
case, the physically interesting situation is still when the μN

t are empirical measures for
N particles and μt their limiting density, whereas αN typically will be the familiar factor
1/

√
N that appears in the classical CLT for i.i.d. random variables.

3.1 Convergence of Deviations

The first decision in order to study the convergence of a sequence of deviations of the form
in (16) is what topology to use. Since ζN

t ∈ Mb , the vector space of totally bounded signed
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measures, and Mb = Cb(R
d)∗, it is natural to consider once again the topology of weak-∗

convergence with respect to Cb(R
d). However, when one takes a closer look at the time evo-

lution of ζN
t it quickly becomes apparent that a simpler and more natural theory is obtained

by using test functions that are not only continuous and bounded but also differentiable.
Thus, we will study the convergence of ζN

t in the larger space M1
b ≡ C 1

b(R
d)∗ with the

weak-∗ topology. In fact, it will be enough to work in the linear subspace M1
b,0 of func-

tionals that satisfy the additional condition 〈ζ,1〉 = 0, as the ζN
t do. Accordingly, we will

identify the elements of C 1
b(R

d) that differ by a constant; one way to do so is by restriction to
the subsets C 1

b,0(R
d) of functions such that 〈μ0, g〉 = 0. Often we will stretch the notation by

using the integral notation
∫

ζ(du0)g(u0) to indicate the action of a functional ζ ∈ M1
b on

g ∈ C 1
b . When ζ ∈ Mb , of course, 〈ζ, g〉 is indeed an integral with respect to ζ (the difference

of the integrals with respect to the Hahn-Jordan components). It should stressed once more
that at this point the ζN

t are not random variables and the analysis is not probabilistic. All
we are studying in this section is the deterministic evolution of the deviations of a sequence
of individual measures μN

t from the limiting measure μt . With this in mind, here is the main
result to be established in this subsection:

Theorem 4 Let F ∈ C 2
b(R

d), G ∈ C 2(Rd) with bounded first and second derivatives (G itself

need not be bounded). If at t = 0 ζN
0

w→ ζ0 ∈ M1
b,0, then ζN

t

w→ ζt ∈ M1
b,0 for t ∈ [0, T ],

weakly continuous in t . For all g ∈ C 1
b,0(R

d)

〈ζt , g〉 = 〈ζ0, Tt (g)〉, (17)

where Tt : C 1
b,0(R

d) → C 1
b(R

d) is the continuous linear operator given4 by

Tt (g) = g(z(t;w0,μ0)) +
∫

Rd

k(t; z0,w0,μ0) · ∇g(z(t; z0,μ0))μ0(dz0). (18)

The integration kernel k(t; z0,w0,μ0) is the unique solution to the (generalized) Braun-
Hepp integral equations,

k(t; z0,w0,μ0) =
∫ t

0
dsF(z(s; z0,μ0) − z(s;w0,μ0))

+
∫ t

0
dsk(s; z0,w0,μ0) · ∇G(z(s; z0,μ0))

+
∫ t

0
ds

∫

Rd

μ0(du0)(k(s; z0,w0,μ0) − k(s;u0,w0,μ0))

× ∇F(z(s; z0,μ0) − z(s;u0,μ0)); (19)

k(t; z0,w0,μ0) is bounded and in C 2([0, T ]) with respect to t , and in C 1
b(R

d) with respect
to z0, w0.

Equations (19) (for the Vlasov case) appear already in the work of Braun and Hepp [2],
but in a rather different context, namely the calculation of the Gâteaux derivative of a charac-
teristic along perturbations of μ0 for N fixed (including N = ∞). Specifically, they showed

4Of course, just by subtracting 〈μ0, Tt (g)〉 one can always modify Tt so that Tt (g) ∈ C 1
b,0.
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that k(t; z0,w0,μ0) is related to z(t; z0,μ0) by the formula5

∫

Rd

ν0(dw0)k(t; z0,w0,μ0) = lim
s→0

1

s
[z(t; z0,μ0 + sν0) − z(t; z0,μ0)], (20)

where ν0 is a positive measure. Here, instead, we will prove that

∫

Rd

ζ0(dw0)k(t; z0,w0,μ0) = lim
N→∞

1

αN

[z(t; z0,μ
N
0 ) − z(t; z0,μ0)], (21)

where ζ0 ∈ M1
b,0, which includes signed measures as well as more general functionals on

C 1
b,0(R

d). This is no longer a Gâteaux derivative, but rather an ad hoc functional derivation of
z about μ0 along the sequence of signed measures αNζN

0 = μN
0 − μ0. Such reinterpretation

of k(t; z0,w0,μ0) has important consequences. Since Braun and Hepp’s functional differ-
entiation of the trajectories does not involve N , they need to carry out the limit N → ∞
later, during the proof of their central limit theorem. This requires some additional, fairly
complicated asymptotic estimates. The same situation occurs in [21]. Here, on the contrary,
the infinite-particle limit is already included in the deterministic analysis of how the charac-
teristic curves depend on variations in the initial condition. This will make the proof of the
central limit theorem much simpler.

To start, consider the Vlasov characteristic equations (6) in t -integral form, with the σt

integration transformed backward to a σ0 integration

z(t; z0, σ0) − z0 =
∫ t

0
ds G(z(s; z0, σ0))

+
∫ t

0
ds

∫

Rd

σ0(du0)F(z(s; z0, σ0) − z(s;u0, σ0)). (22)

If the two equations with σ0 equal, respectively, to μ0 and μN
0 = μ0 + αNζN

0 are subtracted,
and if the operator

DζN
0

f (μ0) ≡ 1

αN

[f (μ0 + αNζN
0 ) − f (μ0)] (23)

is introduced, one gets

DζN
0

z(t; z0,μ0) =
∫ t

0
ds

∫

Rd

ζN
0 (du0)F(z(s; z0,μ0) − z(s;u0,μ0))

+
∫ t

0
dsDζN

0
G(z(s; z0,μ0))

+
∫ t

0
ds

∫

Rd

μN
0 (du0)DζN

0
F(z(s; z0,μ0) − z(s;u0,μ0)). (24)

5See Braun and Hepp’s equation (2.13), which contains a minor notational mistake: on the left-hand side t is
used to indicate both time and the parameter in the limit. They are clearly meant to be two different symbols,
since the right-hand side still depends on t .
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In order to study the limit N → ∞, let us define a new function Dζ0 z(t; z0,μ0) in terms of
the linear integral equations

Dζ0 z(t; z0,μ0) =
∫ t

0
ds

∫

Rd

ζ0(du0)F(z(s; z0,μ0) − z(s;u0,μ0))

+
∫ t

0
dsDζ0 z(s; z0,μ0) · ∇G(z(s; z0,μ0))

+
∫ t

0
ds

∫

Rd

μ0(du0)[Dζ0 z(s; z0,μ0) − Dζ0 z(s;u0,μ0)]

× ∇F(z(s; z0,μ0) − z(s;u0,μ0)). (25)

Under the given smoothness assumption on F and G, the unique solution to these Volterra-
Fredholm type equations for Dζ0 z(t; z0,μ0) is easily obtained in series form. An important
feature is that the initial deviation ζ0 appears only in the inhomogeneous term. Hence, the
solution has the form

Dζ0 z(t; z0,μ0) =
∫

Rd

ζ0(dw0)k(t; z0,w0,μ0), (26)

where k does not depend on ζ0 and satisfies (19), whose (unique) solution is also easily
obtained as a series and shown to have the desired regularity.

Since Dζ0 z(t; z0,μ0) is well-defined, the next step is to prove convergence:

Lemma 1 Under the assumptions in Theorem 4

lim
N→∞

DζN
0

z(t; z0,μ0) = Dζ0 z(t; z0,μ0) (27)

pointwise in z0 ∈ R
d , uniformly in t ∈ [0, T ]. Convergence holds uniformly in z0 as well if

ζ0 is a totally bounded signed measure.

Proof Pointwise convergence with respect to z0 is easily obtained by subtracting (24) and
(25), exploiting the regularity of F, G and applying Gronwall’s inequality. Proving uniform
convergence requires some extra measure-theoretical work. A complete proof is presented
in Appendix A.3. Note that pointwise convergence is all is needed in the proof of Theorem 4
here below. �

We are finally ready to prove Theorem 4:

Proof Consider the fixed-point equations for μN
t and μt ((5) with σt = μN

t ,μt )

μN
t = μN

0 ◦ T 0
t [μN ], μt = μ0 ◦ T 0

t [μ]. (28)

Subtracting and rearranging gives

μN
t − μt

αN

= μN
0 − μ0

αN

◦ T 0
t [μN ] + μ0 ◦ T 0

t [μN ] − T 0
t [μ]

αN

(29)

that is

ζN
t = ζN

0 ◦ T 0
t [μN ] + μ0 ◦ T 0

t [μN ] − T 0
t [μ]

αN

. (30)
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Now, multiply both sides by g ∈ C 1
b,0(R

d) and integrate in z. Changing the integration vari-
ables on the right-hand side to z0 gives

〈ζN
t , g〉 = 〈ζN

0 , g ◦ T t
0 [μN ]〉 +

∫

Rd

DζN
0

g(z(t; z0,μ0)μ0(dz0), (31)

where 〈ζN
0 , g ◦ T t

0 [μN ]〉 converges by hypothesis. The integrand also converges pointwise
to Dζ0 z(t; z0,μ0, ζ0) · ∇g(z(t; z0,μ0)) by Lemma 1 and a standard chain rule argument.
Moreover, since g ∈ C 1

b,0(R
d)

|DζN
0

g(z(t; z0,μ0)| ≤ ‖g‖1‖DN
ζ0

z(t; z0,μ0, ζ0)‖Rd , (32)

where supz0
‖DN

ζ0
z(t; z0,μ0, ζ0)‖Rd is finite by one more application of Gronwall’s inequal-

ity (Appendix A.2). Thus, dominated convergence ensures that

lim
N→∞

〈ζN
t , g〉 = 〈ζ0, g ◦ T t

0 [μ]〉 +
∫

Rd

Dζ0 z(t; z0,μ0, ζ0) · ∇g(z(t; z0,μ0))μ0(dz0). (33)

Substituting (26) this can be written in the form

lim
N→∞

〈ζN
t , g〉 = 〈ζ0, Tt (g)〉, (34)

where Tt is the linear operator in (18). �

As was observed by Spohn [20] (in a probabilistic context), the convergence of 〈ζN
t , g〉

allows one to write down an evolution equation for ζt . Note first that (9) can be generalized
to a partial differential equation for measures (in weak form)

∂

∂t
〈σt , g〉 −

〈
σt ,

(
G(z) +

∫

Rd

F(z − z′)σt (dz′)
)

· ∂g

∂z

〉
= 0, (35)

where now g ∈ C 1
b(R

d). Since 〈σt , g〉 may still not be differentiable in time, its derivative
must be understood in the usual weak sense [18]. With that in mind, subtracting the equa-
tions with σt = μt,μ

N
t gives

∂

∂t
〈ζN

t , g〉 −
〈
ζN
t ,G · ∂g

∂z

〉

+
〈
ζN
t × μt + μt × ζN

t − αNζN
t × ζN

t ,F(z − z′) · ∂g

∂z

〉
= 0. (36)

Taking the limit N → ∞ we have:

Corollary 2 For all g ∈ C 1
b,0(R

d), ζt given by (33) is the (unique) solution to the initial value
problem for the linearized Vlasov equation about μt

∂

∂t
〈ζt , g〉 −

〈
ζt ,G · ∂g

∂z

〉
+

〈
ζt × μt + μt × ζt ,F(z − z′) · ∂g

∂z

〉
= 0 (37)

with initial condition ζ0 ∈ M1
b,0.
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3.2 Convergence of Fluctuations

We now consider the fluctuations from the mean field, i.e. the deviations ζN
t in (16) regarded

as random variables taking values in the topological vector space M1
b,0(R

d) with the weak-∗
topology. In the previous subsection we proved that if any one realization of {ζ n

0 } converges
to ζ0, then the corresponding sequence {ζ n

t } also converges to ζt in (17). This makes it fairly
easy to prove convergence results for the random variables, if good convergence properties at
t = 0 are given. For example, assume that the initial sequence of laws {L(ζ n

0 )} converges6 in
the usual weak sense. Because of Theorem 4 we know that for each n the map Fn : ζ n

0 �→ ζ n
t

is well-defined. We also know that the sequence of the Fn’s is “continuous,” in the sense
that if ζ n

0
w→ ζ0 for ζ0 ∈ M1

b,0(R
6) then Fn(ζ

n
0 )

w→ F(ζ0), where F indicates the map ζ0 �→ ζt

with ζt given by (17). In this framework, (weak) convergence of the laws {L(ζ n
t )} follows by

the continuous mapping theorem7 in its more general form that allows for multiple maps Fn.
The applicability of this type of result is limited because usually one does not want just to

postulate the convergence properties of ζN
0 , but rather deduce them from some assumptions

on P0 via a central limit theorem. In fact, given that the convergence μn
0

w→ μ0 was under-
stood as a law of large numbers associated with a μ0-chaotic initial sequence of symmetric
probabilities {P n

0 }, it is natural to try and prove a central limit theorem for the fluctuations
{ζ n

0 }. Unfortunately, it is usually very difficult to do so in terms of convergence (in law or
otherwise) of random functionals, e.g. random signed measures with the weak-∗ topology
(although work has been done on sequences of signed measures with other, carefully chosen
topologies, see [6]). The more common approach is to study the convergence in law of the
finite-dimensional distributions of quantities like the ζN

0 ’s, regarded as a random fields (or
“empirical processes”) on a suitable set of test functions. In our case this means integrating
ζN
t against finite sets of parameter functions g1, g2, . . . , gk in C 1

b,0(R
d), and considering the

joint probabilities for 〈ζN
t , g1〉, . . . , 〈ζN

t , gk〉. Then, what one needs to prove is the following

Theorem 5 Let F, G satisfy the same hypotheses as in Theorem 4. If the fluctuation field
ζN
t ∈ M1

b,0 converges in law at t = 0, in the sense of the finite-dimensional distributions,
then it will converge in the same fashion for t ∈ [0, T ]. For every g ∈ C 1

b,0 the limiting field
ζt ∈ M1

b,0 satisfies (17), and is the (unique) solution to the linearized Vlasov equation, (37),
with initial condition ζ0.

This is similar to a theorem stated without proof by Spohn [20, Theorem 7.4], the main
difference being that he asks for stronger regularity on the part of both the test functions and
the interaction force. His requirements appear to be motivated by those in the CLT for test
particle trajectories by Braun and Hepp [2]. Sznitman [21], in the Vlasov-McKean context,
finds that the natural index set for the process is C 1

b,0, as I do. Note that the linearized Vlasov
equation is now understood as a stochastic PDE, although the evolution of each realization
of the fluctuation field ζt is still completely deterministic.

6Of course, weak-∗ convergence of laws {L(ζ n
t )} on M1

b,0(Rd ) should not to be confused with weak-∗
convergence in M1

b,0(Rd ).

7See [12, Theorem 16.16] with the caveat that M1
b

is not a metric space but just a Hausdorff topological
vector space. However, inspection of the proof suggests that the continuous mapping theorem generalizes
easily if only the probability measures are τ -smooth. See [19] for the definition of τ -smoothness and for a
closely related result.
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Proof The following is an adaptation of the proof of the continuous mapping theorem [12,
Theorem 4.27], to account for the fact that our assumptions do not guarantee8 that the se-
quence of random measures ζ n

0 converges in law. Rather, we only have convergence in law of
the random vector (〈ζ n

0 , g1〉, . . . , 〈ζ n
0 , gk〉) ∈ R

k , for any given choice of gj ∈ C 1
b,0(R

d), j =
1, . . . , k. We will use the symbol πk to denote the projection πkζ = (〈ζ, g1〉, . . . , 〈ζ, gk〉).
Again based on the analysis of Sect. 3.1, we know that for each n the map Fn : ζ n

0 �→ ζ n
t

is well-defined and that if ζ n
0

w→ ζ0, with ζ0 ∈ M1
b,0(R

6), then Fn(ζ
n
0 )

w→ F(ζ0), with
F(ζ0) ≡ ζt defined by (17) and satisfying (37). Let G be a fixed open set in R

k and let
s ∈ F−1 ◦ π−1

k G; since πk ◦ Fn(ζ
n
0 ) → πk ◦ F(ζ0) if ζ n

0
w→ ζ0, for any given neighborhood

of s we can choose m large enough that πk ◦ Fl maps the whole neighborhood into G for all
l ≥ m. Hence,

F−1 ◦ π−1
k G ⊂

⋃

m

[⋂

l≥m

F−1
l ◦ π−1

k G

]◦
. (38)

By applying πk to both sides of this inclusion it is then easy to see that

πk ◦ F−1 ◦ π−1
k G ⊂

⋃

m

[⋂

l≥m

πk ◦ F−1
l ◦ π−1

k G

]◦
. (39)

Let P n
0 and P0 be, respectively, the probability distributions of ζ n

0 and ζ0. Then,

P0(F
−1 ◦ π−1

k G) ≤ P0 ◦ π−1
k

⋃

m

[⋂

l≥m

πk ◦ F−1
l ◦ π−1

k G

]◦

= sup
m

P0 ◦ π−1
k

[⋂

l≥m

πk ◦ F−1
l ◦ π−1

k G

]◦
. (40)

By hypothesis L(πkζ
n
0 ) → L(πkζ0) as n → ∞, i.e. P n

0 ◦ π−1
k

w→ P0 ◦ π−1
k . Using one of the

Portmanteau characterizations of convergence in law, the right-hand side of the last equation
is dominated by

sup
m

lim inf
n→∞ P n

0 ◦ π−1
k

[⋂

l≥m

πk ◦ F−1
l ◦ π−1

k G

]◦
; (41)

lim infn→∞ does not change if we only consider n ≥ m, and then supm

⋂
l≥m must be less or

equal to the value that occurs when l = m = n, which is

lim inf
n→∞ P n

0 ◦ π−1
k [πk ◦ F−1

n ◦ π−1
k G]◦ ≤ lim inf

n→∞ P n
0 (F−1

n ◦ π−1
k G). (42)

Finally, since the left-most term in (40) is less or equal to the right-most term in (42), it
follows by another application of the Portmanteau theorem that

P n
0 ◦ F−1

n ◦ π−1
k

L→ P0 ◦ F−1 ◦ π−1
k (43)

which is equivalent to say that L(πkζ
n
t ) → L(πkζt ). �

8We remark that for (positive) random measures, convergence in law of the finite dimensional distributions
does imply convergence in law of the measures, see [12], Theorem 16.16. However, as far as I know, no
similar theorem is available for elements of M1

b,0 or even just for signed measures. For work in this direction
see [10].
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The simplest example to which this general result applies is that of factorized initial prob-
ability measures like those considered by Sznitman [21]. In this case, it follows immediately
from the standard central limit theorem for R

k-valued random vectors that as N → ∞ the
random field ζN

0 (with αN = 1/
√

N ) converges in law, in the sense of the finite-dimensional
distributions with respect to the parameter space C 1

b,0(R
d), to a Gaussian random field ζ0

with mean zero and covariance

E(〈ζ0, gl〉〈ζ0, gm〉) = 〈μ0, glgm〉 − 〈μ0, gl〉〈μ0, gm〉. (44)

Then, Sznitman’s CLT (for the “pure Vlasov” case, without diffusion terms) is recovered
from Theorem 5 without any further effort.

Theorem 6 Let F, G satisfy the same hypotheses as in Theorem 4, let the initial sequence
of symmetric probability measures be {P̃ n

0 } of the form in (15), and let αN = 1/
√

N . Then,
as N → ∞ the random field ζN

t converges in law, in the sense of the finite-dimensional
distributions, to a Gaussian random field ζt for t ∈ [0, T ]; the field ζt has mean zero and
covariance

E(〈ζt , gl〉〈ζt , gm〉) = 〈μ0, Tt (gl)Tt (gm)〉 − 〈μ0, Tt (gl)〉〈μ0, Tt (gm)〉, (45)

where Tt is the operator defined in (18).

Proof The limiting field ζt has zero mean, like ζ0, and the covariance is obtained from (17)
and (44). �

4 Strongly μ-Chaotic Sequences

Clearly the hypothesis that the initial probability measures factorize for all N is a very strong
assumption. It is not easily justified on physical grounds, especially because we cannot ex-
pect it to propagate in time. Thus, we cannot argue that an initially factorized probability
measure is the result of some previous evolution of the system, since in general interactions
between particles create statistical correlations. We encountered a somewhat analogous situ-
ation when reviewing the law of large numbers, which is known to be equivalent to a weaker
form of statistical independence, called μ-chaoticity, which does propagate in time and so
determines a more natural class of initial probability measures for the mean-field dynamics.
One wonders if anything similar holds true for the central limit theorem, but the answer is
only partially in the affirmative. In this last section we show that there is indeed a stronger μ-
chaoticity-type condition on the N -particle probability measures that is both necessary and
sufficient for the validity of a CLT in which the limiting field is Gaussian with mean zero
and covariance of the form in (44). In other words, we are going to prove a “higher-order”
version of the Sznitman-Tanaka Theorem, Theorem 2. If one assumes “strong” μ-chaoticity
at t = 0, our general propagation result, Theorem 5, ensures the validity of a similar CLT
for t > 0. However, the sequence of ensemble probability measures at t > 0 turns out to be
μ-chaotic but not strongly μ-chaotic, because the covariance, which is given again by (45),
is not of the required form.

From now on let αN = 1/
√

N . For a given μ ∈ M+
1 , let {P n} be a μ-chaotic sequence of

symmetric probability measures for the random vectors (z1, . . . , zN) ∈ R
dN , and let {P̃ n} be

the sequence of product measures P̃ N = ⊗N

i=1 μ(dz̃i ), with (z̃1, . . . , z̃N) the corresponding
random vectors. Let μN , ζN and μ̃N , ζ̃ N be the empirical measures and the fluctuations
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associated, respectively, with P N and P̃ N . Let P N ≡ P N × P̃ N be the joint probability (law)
of (z1, . . . , zN, z̃1, . . . , z̃N), and P ≡ P × P̃ the probability measure for infinite sequences
determined by the hierarchy {P n}. Expectations with respect to P N and P will be denoted
by EN and E . For g,h ∈ Cb(R

d) let

Cμ[g,h] def= 〈μ,gh〉 − 〈μ,g〉〈μ,h〉. (46)

Of course, this is just the bilinear form that appears in the expression for the covariance of
the limiting Gaussian law in the central limit theorem for empirical densities associated to
i.i.d. random variables, see (44).

Definition 2 A μ-chaotic sequence {P n} of symmetric probabilities is said to be strongly
μ-chaotic if, for k = 1,2, . . . and g1, . . . , gk ∈ Cb(R

d), it satisfies

lim
N→∞

N
k
2

∫

Rdk

k∏

i=1

(gi(zi ) − 〈μ,gi〉)P k,N (dz1 . . .dzk) = 0. (47)

To put this in context, note that μ-chaoticity by itself is equivalent to

lim
N→∞

∫

Rdk

k∏

i=1

(gi(zi ) − 〈μ,gi〉)P k,N (dz1 . . .dzk) = 0. (48)

Equation (47) simply requires a higher rate of convergence for the same limit. Obviously,
sequences of factorized probability densities are strongly μ-chaotic.

Lemma 2 A μ-chaotic sequence of symmetric probability measures {P n} is strongly μ-
chaotic if and only if, for k = 1,2, . . . and g1, . . . , gk ∈ Cb(R

d),

lim
N→∞

EN

[
k∏

i=1

(〈ζN , gi〉 − 〈ζ̃ N , gi〉)
]

= �k, (49)

where

�k =
{

0 for k odd
∑

A∈k

∏
{i,j }∈PA

2Cμ[gi, gj ] for k even;
(50)

here k indicates the set of all allocations A of the set {1,2, . . . , k} into k/2 unordered pairs
{i, j}, and PA = Range(A).

Proof If φj (zi , z̃i ) ≡ gj (zi ) − gj (z̃i ), j = 1, . . . , k, the left-hand side in (49) can be written
in the form

∫

RdN

∫

RdN

1

Nk/2

k∏

j=1

N∑

i=1

φj (zi , z̃i )P N(dz1 . . .dzN dz̃1 . . .dz̃N). (51)

Expanding the product turns the integrand into a sum of products of the form

N∑

i1=1

· · ·
N∑

ik=1

φ1(zi1 , z̃i1) . . . φk(zik , z̃ik ). (52)
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By permutation symmetry, all the index vectors (i1 . . . ik) that are related by permutations
give identical contributions to the expectation value. Let I

k indicate all such equivalence
classes of index vectors with respect to the symmetric group. A representative element for
each class can be selected, for instance, by stipulating that i1 = 1 and then moving from
left to right and attributing the next integer value to any index whose value never appeared
before. Elementary combinatorics shows that the number of elements in each class I is given
by

N !
(N − Rk(I))!

Rk(I)∏

�=1

n�!,

where Rk(I) is the number of non-identical entries in each index vector belonging to the
class and n� is the number of factors that depend on (z�, z̃�). The notation reflects the fact
that if the elements of I are viewed as a maps from (1, . . . , k) to (1, . . . ,N) then Rk(I) is
the dimension of their range. In order to study the asymptotics as N → ∞, it is convenient
to distinguish the subsets I

k
m ≡ {I ∈ I

k : Rk(I) = m}. Then, (51) becomes

k∑

m=1

∑

I∈I
k
m

1

Nk/2

N !
(N − m)!

m∏

�=1

n�!Em,N [φ1(zi1 , z̃i1) . . . φk(zik , z̃ik )], (53)

Em,N being the expectation with respect to P m,N ≡ P m,N × P̃ m,N .
Now, we are ready to prove our statement. Assume first that (49) holds, so that also (53)

goes to �k ; μ-chaoticity will be proven by induction. For k = 1, �1 = 0, and (53) gives

lim
N→∞

√
N E1,N [φ1(z1, z̃1)] = 0. (54)

so that the μ-chaoticity condition is satisfied. Now, assume that (47) has been verified up to
k − 1, and take the limit as N → ∞ in (53); note that the factors that multiply Em,N in (53)
are of order Nm−k/2.

– The dominant term occurs for m = k, when (i1i2 . . . ik) = (12 . . . k); this leading term is
asymptotically equal to

N
k
2 Ek,N

[
k∏

j=1

(gi(zi ) − 〈μ,gi〉)
]

(55)

which is the quantity inside the limit in (47).
– Clearly, all terms with m < k/2 vanish as N → ∞.
– Let us consider the terms with k > m > k/2. We want to use the induction hypothesis

of lower-order strong μ-chaoticity. Among the functions φ1, . . . , φk at least m − (k −
m) = 2m − k do not share their independent variable with anybody else. If we assign
to each of these a factor

√
N , we “use” the existing factor Nm−k/2 completely (we may

even “create” some power of 1/
√

N if more that 2m − k φj ’s do not share independent
variables). The remaining φj ’s can be organized in products of those that share the same
independent variables, say (zi , z̃i ). Take the expectation of each product with respect to
the μ(dz̃i ) factor from P̃N to produce a new test function hi(zi ). Add and subtract the μ

average of hi with respect to zi : hi(zi ) = (hi(zi )−〈μ,hi〉)+〈μ,hi〉. Both types of factors
hi(zi ) − 〈μ,h〉 and 〈μ,h〉 allow one to apply strong μ-chaoticity after the product of the
various “blocks” of φj ’s is expanded, and it is easily seen that everything vanishes—the
dominant term being the one where the product of all the constants 〈μ,hi〉 appears. If k is
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odd, we have established strong μ-chaoticity, since (51) vanishes by (49) and it has been
shown to have the same limit as (55).

– If k is even, we still have to consider the term with m = k/2 in (53). If any one among
the φj ’s does not share its independent variable with anybody else, again strong μ-
chaoticity at order lower than k implies that the corresponding term vanishes. Hence,
one only needs consider the equivalence classes in I

k
k/2 where each independent variable

appears in exactly two φj ’s, i.e. n� = 2 for � = 1,2, . . . , k/2; it is easily seen that there are
(k − 1)!! ≡ 1 × 3 × 5 × · · · × (k − 1) such classes. Again regarding the P̃N expectation of
products φiφj of pairs of functions with the same variable as new test functions, adding
and subtracting the μ-averages and using standard μ-chaoticity shows that as N → ∞ all
is left is

2
k
2

∑

A∈k

∏

{i,j }∈PA

〈μ, (gi − 〈μ,gi〉)(gj − 〈μ,gj 〉)〉 = �k (56)

Combining the last equation with (55) and (49) yields strong μ-chaoticity also for k even.

Conversely, starting from strong μ-chaoticity the same calculation shows that the quantity
in (51) goes to �k as N → ∞, which proves (49). �

It should be mentioned that if one applies a similar argument to (51) and (53) without the
factors 1/Nk/2, one recovers the Sznitman-Tanaka theorem (by proving that μN − μ̃N → 0
in law if and only if the sequence {P n} is μ-chaotic.) By now, observant readers will have
recognized the quantities �k in (50) as the k-th order central moments of a Gaussian random
vector. By well-known theorems of probability theory, this observation leads to:

Lemma 3 A μ-chaotic sequence of symmetric probability measures {P n} is strongly μ-
chaotic if and only if, as N → ∞, ζN − ζ̃ N converges in law, in the sense of the finite di-
mensional distributions, to a Gaussian process with mean zero and covariance 2Cμ[gi, gj ].

It is now easy to see that strong μ-chaoticity is both necessary and sufficient for the
validity of the “classical” central limit theorem with a Gaussian limit

Theorem 7 Let {P n} be a sequence of μ-chaotic symmetric probability measures. The
fluctuations ζN converge (in law, in the sense of the finite dimensional distributions) to a
Gaussian field with mean zero and covariance Cμ[gi, gj ], gi, gj ∈ Cb(R

d), if and only if
{P n} is strongly μ-chaotic.

Proof For g1, . . . , gk ∈ Cb(R
d) consider

ZN = (〈ζN , g1〉, . . . , 〈ζN , gk〉),
Z̃N = (〈ζ̃ N , g1〉, . . . , 〈ζ̃ N , gk〉),
DN = ZN − Z̃N

which we regard as R
k-valued random vectors on the probability space R

dN × R
dN with

the Borel sets and the product probability measure P N . We know from the classical central
limit theorem for empirical measures for i.i.d. random variables that Z̃N converges in law
to a Gaussian random vector Z̃∞ with mean zero and covariance matrix Cμ[gi, gj ]. We also
know from Theorem 3 that strong μ-chaoticity is equivalent to convergence in law of DN to
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a Gaussian random vector with mean zero and covariance matrix 2Cμ[gi, gj ]. Hence, strong
μ-chaoticity implies that also ZN converges in law to Z∞, and vice versa convergence of ZN

ensures convergence of DN to D∞, with Z∞ − Z̃∞ = D∞. In order to identify the limits Z∞,
D∞, observe that L(−Z̃∞) = L(Z̃∞) and that Z∞ and Z̃∞ are independent. Hence, standard
theorems give the relation among characteristic functions

E [eiZ∞·W]E [eiZ̃∞·W] = E [eiD∞·W] (57)

from which it follows easily that if two of the limiting vectors are Gaussian so is the third
one, with the desired covariance matrices. �

Both this theorem and the original Sznitman-Tanaka one, Theorem 2, hold true if the
index functions are taken from C 1

b,0(R
d) instead of Cb(R

d). In particular, the definitions of μ-
chaoticity and strong μ-chaoticity can be modified by restricting the set of index functions to
C 1

0,b(R
d). With that in mind, Theorems 3 and 5 apply to strongly μ-chaotic initial conditions:

Theorem 8 Let μt be the solution to (5), with initial condition μ0. Let the sequence {P n
0 }

be strongly μ0-chaotic. Then, for t ∈ [0, T ]
1. (Central Limit Theorem) The fluctuations ζN

t converge (in law, in the sense of the finite
dimensional distributions on C 1

b,0) to the Gaussian field with mean zero and covariance
Cμ0 [Tt (gi), Tt (gj )], gi, gj ∈ C 1

b,0(R
d).

2. (Propagation of chaos) The sequence {P n
t } is μ-chaotic.

Since in general Cμ0 [Tt (gi), Tt (gj )] 	= Cμt [gi, gj ], strong μ-chaoticity does not pro-
pagate under the Vlasov evolution. One way to look at this situation is that the covariance
matrix at t > 0 of the Vlasov fluctuations reflects higher-order statistical correlations be-
tween particles that “survive” the infinite particle limit. One wonders if strong μ-chaoticity
does propagate for more complicated “collisional” models—such as the Landau or Balescu-
Guernsey-Lenard equations of classical plasma physics—which may be able to wipe out
statistical correlations more efficiently than mean-field dynamics. This is, of course, a very
difficult question to be left for future studies.

Acknowledgements I would like to thank Michael Kiessling for many helpful discussions.

Appendix A: Applications of Gronwall’s Inequality

Gronwall’s inequality plays an important role in the mathematical study of the mean field
limit, and fluctuation theory is no exception. Here we only need the inequality in its simplest
form, which says that if a continuously differentiable function f : [0, T ] → R satisfies

df

dt
≤ A + Bf, (58)

where A and B are constants, then

f (t) ≤ f (0)eBt + A
eBt − 1

B
. (59)
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In all cases of interest here f (0) = 0. To simplify the notation, everywhere in this appendix
the symbol ‖ · ‖ indicates the Euclidean norm in R

d . We shall use repeatedly that fact that
for any f ∈ C 1([0, T ];R

d)

d

dt
‖f (t)‖ ≤

∥∥∥∥
df

dt

∥∥∥∥ (60)

which follows easily from the triangle inequality (it is, in fact, true for functions valued in
any Banach space, not just R

d ). Also, when we talk about uniform convergence as N → ∞,
it will be understood that we are concerned about uniformity with respect to the initial point
z0 ∈ R

d . Uniformity with respect to t will always be trivially true as long as t lies in the
finite interval [0, T ].

A.1 Uniform Convergence of Characteristic Curves

We use the shorthand

�Nf (μ0) ≡ f (μN
0 ) − f (μ0). (61)

Subtracting the two Vlasov characteristic equations, (6), with σt = μt , μN
t and transforming

the integrations back to μ0, μN
0 yields

d

dt
�N z(t; z0,μ0) =

∫

Rd

(μN
0 − μ0)(du0)F(z(t; z0,μ0) − z(t;u0,μ0))

+ �N G(z(t; z0,μ0))

+
∫

Rd

μN(du0)�N F(z(t; z0,μ0) − z(t;u0,μ0)). (62)

Let LF, LG be the Lipschitz constants of F and G, respectively, and BF the upper bound
on ‖F‖. By a simple trick (see [18, p. 68]) the first term on the right-hand side can be
bounded in terms of the BL distance between μN

0 and μ0. Using the Lipshitz continuity of
F and G and the triangle inequality

d

dt
sup

z0∈Rd

‖�N z(t; z0,μ0)‖ ≤2BFLFd(μN
0 ,μ0) + L sup

z0∈Rd

‖�N z(t; z0,μ0)‖, (63)

where L ≡ 2LF + LG. Then, Gronwall’s inequality gives

sup
z0∈Rd

‖�N z(t; z0,μ0)‖ ≤ 2BFLF
eLt − 1

L
d(μN

0 ,μ0) (64)

which implies (8).

A.2 Uniform upper Bound on DζN
0

z(t; z0,μ0)

If one divides (62) by αN and exploits like before the Lipschitz continuity of F and G one
gets
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d

dt
‖DζN

0
z(t; z0,μ0)‖ ≤

∥∥∥∥
∫

Rd

ζN
0 (du0)F(z(t; z0,μ0) − z(t;u0,μ0))

∥∥∥∥

+ L‖DζN
0

z(t; z0,μ0)‖. (65)

Since the sequence {ζ n
0 } converges in the weak-∗ topology of M1

b , it is norm-bounded. Thus
the first term on the right has a uniform upper bound M , obtained by multiplying the bound
on the norm of the ζN times the C 1

b norms of the components of F and taking the Euclidean
norm:

d

dt
sup

z0∈Rd

‖DζN
0

z(t; z0,μ0)‖ ≤M + L sup
z0∈Rd

‖DζN
0

z(t; z0,μ0)‖. (66)

Hence, Gronwall’s inequality gives

sup
z0∈Rd

‖DζN
0

z(t; z0,μ0)‖ ≤ MB
eLt − 1

L
. (67)

A.3 Proof of Lemma 1

In this case the quantity that needs to be majorized is

ηN(t; z0,μ0, ζ0) ≡ ‖DζN
0

z(t; z0,μ0) − Dζ0 z(t; z0,μ0)‖, (68)

which is uniformly bounded for z0 ∈ R
d and t ∈ [0, T ] (since both DζN

0
and Dζ0 are). Using

the multivariate Taylor formula (with remainder) gives

‖DζN
0

G(z(t; z0,μ0)) − Dζ0 z(t; z0,μ0) · ∇G(z(t; z0,μ0))‖
≤ LGηN(t; z0,μ0, ζ0) + CG‖DζN

0
z(t; z0,μ0)‖‖�N z(t; z0,μ0)‖, (69)

where now LG ≡ sup
Rd ‖∇G‖ and CG is a constant whose value reflects the upper bounds

on the second derivatives of G. In the same manner

‖DζN
0

F(z(t; z0,μ0) − z(t;u0,μ0))

− [Dζ0 z(t; z0,μ0) − Dζ0 z(t;u0,μ0)] · ∇F(z(t; z0,μ0) − z(t;u0,μ0))‖
≤ LF[ηN(t; z0,μ0, ζ0) + ηN(t;u0,μ0, ζ0)]

+ CF‖DζN
0

z(t; z0,μ0) − DζN
0

z(t;u0,μ0)‖‖�N z(t; z0,μ0) − �N z(t;u0,μ0)‖. (70)

Using these bounds in the equation obtained by differentiating and subtracting (24) and (25)
leads to

d

dt
ηN(t; z0,μ0, ζ0) ≤AN(t; z0,μ0, ζ0) + (Lf + LG)ηN(t; z0,μ0, ζ0)

+ Lf

∫

Rd

μ0(du0)ηN(t;u0,μ0, ζ0), (71)

where
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AN(t; z0,μ0, ζ0) =
∥∥∥∥
∫

Rd

(ζN
0 − ζ0)(du0)F(z(t; z0,μ0) − z(t;u0,μ0))

∥∥∥∥

+ CG‖DζN
0

z(t; z0,μ0)‖‖�N z(t; z0,μ0)‖

+ CF

∫

Rd

μ0(du0)‖DζN
0

z(t; z0,μ0) − DζN
0

z(t;u0,μ0)‖

× ‖�N z(t; z0,μ0) − �N z(t;u0,μ0)‖. (72)

Clearly, AN(t; z0,μ0, ζ0) goes to zero as N → ∞ for each z0. It follows that ηN(t; z0,μ0,

ζ0) → 0 pointwise via a double application of Gronwall’s inequality, first to (71) integrated
with respect to μ0(dz0),

d

dt

∫

Rd

μ0(du0)ηN(t;u0,μ0, ζ0) ≤
∫

Rd

μ0(du0)AN(t;u0,μ0, ζ0)

+ L

∫

Rd

μ0(du0)ηN(t;u0,μ0, ζ0). (73)

Dominated convergence ensures that

lim
N→∞

∫

Rd

μ0(du0)AN(t;u0,μ0, ζ0) = 0 (74)

and then (73) implies that also
∫

Rd μ0(du0)ηN(t;u0,μ0, ζ0) → 0. Finally, Gronwall’s in-
equality must be applied again to (71) itself in order to bound ηN(t; z0,μ0, ζ0) in terms of
AN(t; z0,μ0, ζ0) + LF

∫
Rd μ0(du0)ηN(t;u0,μ0, ζ0).

While pointwise convergence is all is needed in the proof of Theorem 4, it is interesting
that whenever ζ0 ∈ Mb one can show that convergence is in fact uniform with respect to z0.
Equation (71) implies

d

dt
sup

z0∈Rd

ηN(t; z0,μ0, ζ0) ≤ sup
z0∈Rd

AN(t; z0,μ0, ζ0) + L sup
z0∈Rd

ηN(t; z0,μ0, ζ0) (75)

and uniform convergence will follow by Gronwall’s inequality if only one can establish that
supz0∈Rd AN(t; z0,μ0, ζ0) → 0. From (64) and (67) it is easy to see that the terms on the
second and third lines in (72) are dominated by

2M(CG + 4CF)B2
FLF

[
eLt − 1

L

]2

d(μN
0 ,μ0) (76)

which does not depend on z0. The main difficulty lies with the integral with respect to
ζN

0 − ζ0 in (72). One would like to have an uniform estimate in terms of some “distance”
between ζN

0 and ζ0, like it was done for the inhomogeneous term in (62), but this idea
cannot be immediately implemented for signed measures since the weak-∗ topology in
Mb is not metrizable. Note, however, that the definition of the BL distance for positive
measures, (3), extends without any trouble also to signed measures. Clearly, the condition
limN→∞ d(ζN , ζ ) = 0 implies that

∫
f dζN → ∫

f dζ for all f that are bounded and uni-
formly Lipschitz, but for signed measures this is not enough to establish weak-∗ conver-
gence (see [1, § 8.3.1]). However, the opposite implication is still valid:
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Lemma 4 If ζN

w→ ζ in Mb , then limN→∞ d(ζN , ζ ) = 0.

Proof Since R
d with the Euclidean topology is a complete metric space and Q = {ζN } ∪ ζ

is weakly-∗ compact, general theorems of measure theory (see [7, Theorems 4 and 5] and
also [1, Sec. 8.6]) ensure that Q is norm-bounded and uniformly tight, meaning that for each
ε > 0 there is a compact subset K ⊂ R

d such that

sup
ξ∈Q

{|ξ |(Rd/K)} < ε. (77)

Then, the same type of argument as in [4, Theorem 11.3.3] applies. Consider the set B of
functions such that ‖f ‖BL ≤ 1. Their restrictions to K form a compact subset of Cb(K) by
the Arzelà-Ascoli Theorem. Hence, one can extract a finite family f1, . . . , fk of functions in
B such that for any f ∈ B and some j ≤ k

sup
y∈K

|f (y) − fj (y)| < ε. (78)

We write:
∣∣∣∣
∫

Rd

f d(ζn − ζ )

∣∣∣∣ ≤
∫

Rd

|f − fj |d(|ζN | + |ζ |) +
∣∣∣∣
∫

Rd

fj d(ζN − ζ )

∣∣∣∣. (79)

Once the first term on the right-hand side is broken into two integrals on K and R
d/K ,

it is easily majorized (independently of f ) by a constant times ε thanks to (77) and (78)
(recall that Q is bounded in norm). The second term is smaller than ε if N is large enough,
regardless of f . The conclusion follows. �

At last, since
∥∥∥∥
∫

Rd

(ζN
0 − ζ0)(u0)F(z(t; z0,μ0) − z(t;u0,μ0))

∥∥∥∥ ≤ 2BFLFd(ζN
0 , ζ0) (80)

and ζN
0

w→ ζ0, the Lemma ensures that the left-hand side goes to zero uniformly with respect
to z0, and we can conclude that

lim
N→∞

sup
z0∈Rd

ηN(t; z0,μ0, ζ0) = 0. (81)
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